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Abstract

Robot learning by imitation requires the detection of a tutor’s action demonstration and its relevant parts. Current
approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges
this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by
providing feedback, a robot learner influences the human tutor’s movement demonstrations in the process of action
learning. We argue that the robot’s feedback strongly shapes how tutors signal what is relevant to an action and thus
advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from
interaction.
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Introduction

If robots are to become ubiquitous helpers in our society, they

need to be able to learn about actions relevant for new tasks and

environments that they have to cope with. Innumerable possible

situations a robot could encounter render the research field of

imitation learning particularly important because it aims at

replacing manual programming by learning from a tutor’s

demonstration [1]. This requires the detection of a tutor’s action

demonstration and its relevant parts [2]. It is a persistent research

question how tutors convey the meaning of actions and which

factors control their demonstrations, even when some regularities

can be identified: In child-directed interaction, for example, tutors

modify their body movements to direct the learners’ attention [3],

[4], [5]. Recent research suggests that in both robot- and child-

directed interaction, tutors modify their linguistic and nonverbal

behavior to act appropriately for their analysis of the learner’s

understanding and the resulting communicative situation [6]. The

meaning of an action can be highly person specific and depends on

the history that the tutor has with that action. Consider, for

example, to drive in a nail with a hammer. The goal is to drive the

nail home without bending and without hitting one’s own finger.

Depending on the tutor’s own experience (and expertise level) s/he

will focus on the aspect s/he deems most important in order to not

overload the pupil’s cognitive capabilities. We therefore use the

term ‘‘tutor’s knowledge’’ – instead of the term ‘‘action type’’

which suggests an objective and universal meaning of actions – to

emphasize the subjective nature of action meaning.

Traditional approaches of action learning in robots – which

implicitly assume a unidirectional transfer of action knowledge

from tutor to learner [2] (Figure 1 A) – specify what is relevant to

an action to the robot beforehand (either manually or by defining

expected, usually artificial, tutor behaviors that signal movement

relevance). They are therefore limited to one or a few specific

tasks. In real-world scenarios with untrained users, however, this is

not realistic. On a trajectory level, probabilistic approaches can

model which parts of simple manipulatory tasks are relevant by

gaining information from the variance over multiple demonstra-

tions of the same movement [7], [8]. These approaches, however,

have not been evaluated with untrained users.

There exists a limited amount of related work not only in the

field of imitation learning which is considering a bi-directional

interaction between tutor and learner. Thomaz et al. introduce

learner feedback with what they term ‘‘transparency mechanism’’

into machine learning systems. These approaches include action

learning by a reinforcement learning agent in a web-based setup

[9]. The agent uses a fixed set of actions on a fixed set of objects.

Before an action, it gives feedback by gazing at all objects involved

in those actions the system deems relevant next. Thus, the system’s

uncertainty about the following action is proportional to the

amount of time gazing and a corresponding delay before the next

action is carried out. Only during this phase the tutor could

provide guidance about the next relevant action to the learner by

drawing a yellow square outline onto an object with the right

mouse button. Additionally the tutor could provide a positive or

negative numerical reward to the learner at any time during the

interaction.

Another symbolic approach for learning object affordances by

exploration involves a robot learner communicating that the

object to be learned is too far or too close by tilting its neck to the

upper limit and back [10]. The only social signal the human tutor

could provide was to choose an object from a set, horizontally
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center it in the robot’s workspace when the robot had its arms in

an idle position and decide how often the robot should manipulate

it.

A number of current dialog systems also incorporate feedback

from the robot learner [11], [12], [13]. For instance, for

compound symbol learning, the authors of [11] employed non-

verbal robot feedback in form of a fixed sequence of behaviors and

a set of animations to communicate a certain object and the

confidence in an answer, respectively. In this setup, the tutor

presented the symbols and provided information or queried the

system by saying three possible predefined sentences. In a study

presented in [12] the content of questions posed by a robot was

varied to investigate its influence on responses from the human

partner for object recognition. Another study implemented verbal

and non-verbal feedback in a robot to investigate its influence on

itinerary requests [13].

These works try to approach the issue from a different angle

than the work at hand. They use symbolic systems in restricted

interactions, where it is straightforward to incorporate social cues

and system feedback and investigate their influence on the learning

mechanism. In these approaches for the most part, the important

cues are predefined. Learning methods using symbolic encoding

rely on a large amount of prior knowledge, so preprogrammed

interaction protocols are employed. In contrast, we are aiming at

examining in complex natural interaction how robot feedback

influences the tutor’s behavior which provides social cues about

the meaning of actions.

Recently, an approach to learning continuous movement skills

has been proposed which integrates social cues from the tutor (i.e.

prosody, head orientation and gaze direction), though it has not

been tested with inexperienced users [14]. We are not aware of

related work on imitation of actions on a trajectory-level which

incorporates robot feedback into the system.

The presented work challenges the predominant assumption of

a unidirectional knowledge transfer based on an extensive user

study with an autonomously interacting humanoid robot. We

subscribe to a perspective present in research in social human-

human interaction emphasizing the process of alignment between

mental states, actions’ goals [15], and communication [16].

Correspondingly, action learning via interaction has the aim to

align the learner’s mental states or action goals to those of the tutor

in a co-construction, which is not possible through active

perception only (active perception refers to strategies involving

for instance an autonomous re-positioning of the robot’s sensors to

increase information gain and improve perception [17]). Sub-

scribing to the interactive view in Human-Robot Interaction

(HRI), it is not the user alone who determines what is being

demonstrated (Figure 1A) (as it is currently implicitly assumed in

robot imitation learning) but the demonstration has to emerge

with the feedback of the learner (Figure 1 B).

Feedback behavior is essential since, as we have previously

shown in parent-child interactions [3], tutors are highly sensitive to

the learner’s feedback, which is an important cue to infer the

learner’s current state of understanding. Parents for instance

modify their manual movements with regard to their child’s focus

of attention. Also robots – similarly to children – can benefit from

the input tailored specifically to their perceptional and cognitive

capabilities [6]. In current HRI, the interactive view on social

cognition and communication has not been tested, because most

robots are barely capable of a real interaction. An appropriate

setting requires endowing a humanoid robot with autonomous

feedback behavior, which is a technically demanding task which

we had to solve to conduct the current study (see Methods section).

This is opposed to commonly applied Wizard-of-Oz techniques, in

which a human operator remotely controls the robot, making

them much simpler but unsuitably implying generating human

feedback instead of robotic feedback for the robotic system [18].

Adopting the interactive view, we argue that it is both the tutor’s

knowledge about the action to be transferred to the learner (H1)

and also the feedback behavior of the robot (H2 and H3) that

determines the tutor’s demonstrations. Concretely, our hypotheses

are:

Figure 1. Action learning concept graphics. (A) Unidirectional concept of current imitation learning approaches: The tutor demonstrates the
action (white oval) according to his/her knowledge (upper hatched oval). The learner passively observes the action demonstration and learns the
action. (B) Interactionist concept of learning: The tutor demonstrates the action (upper white oval) corresponding to his/her knowledge (upper
hatched oval) emphasizing what is relevant to the action accordingly. The learner’s level of understanding or knowledge of the action (lower hatched
oval) is communicated by his/her feedback (lower white oval). This feedback directly influences the tutor’s action demonstration. The tutor monitors
the learner’s feedback, builds hypotheses about the learner’s understanding, and reacts by changing his/her demonstration accordingly as will be
shown in this contribution.
doi:10.1371/journal.pone.0091349.g001
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H1. Action demonstrations differ depending on the tutor’s

semantic knowledge about an action.

To control for the action knowledge which is conveyed to the

robot, we designed two different kinds of tasks: goal- and manner-

crucial [19]. This aspect of action understanding, which the tutor

wants to transfer to the learner, refers to the importance of the goal

state of an action versus the importance of the manner in which an

action is carried out.

H2. The robot’s feedback influences future action demonstra-

tions of the tutor.

As often emphasized, it is necessary for the tutor to monitor the

level of understanding of the learner [20]. The robot learner’s way

of replicating an action is therefore an important turn-based feedback

giving the tutor cues with respect to the robot’s action

understanding. A human learner’s understanding of an action

evolves from a rudimentary and holistic representation to a rich

and structured one [21]. Thus, the tutors who are all unaware of

learning methods in artificial systems will try to deduce the

system’s action representation from its feedback behavior, and

react accordingly. In particular, we hypothesize that the tutor will

repeat the demonstration of an action in a modified way, if the

robot executes the action incorrectly. However, the tutor will be

satisfied with the robot’s performance and will not repeat the

demonstration, if the robot executes the action correctly.

H3. The robot’s feedback directly influences the tutor’s current

demonstration.

The robot’s gaze during the tutor’s action demonstration serves

as an important online feedback. Similarly to (H2), it provides the

tutor with cues with respect to action understanding.

Materials and Methods

Ethics Statement
The Technical Faculty of Bielefeld University does not have an

ethics committee dealing with human-robot interaction research.

Nevertheless, this research was conducted in accordance with the

ethical principles for human subject research expressed in the

Declaration of Helsinki. For the described analyses only anony-

mous data were used. Partially informed consent was obtained in

writing from all subjects participating in the study. Subjects were

told the robot would try to replicate their movements, even though

the robot behavior was predetermined according to the feedback

condition (see next section). A debriefing session, in which all

research methods and aims were fully disclosed to the subjects,

followed the study.

Subjects
In the current study, 59 adult subjects (28 m, 31 f) were

instructed to teach a full-size humanoid robot equipped with a

fully autonomous feedback behavior (see the technical setup below)

how to perform specific actions with eight different objects. One

subject was excluded from all analyses because she neglected the

task instructions. The subjects were right-handed to avoid side

differences in action presentation, they were German native

speakers to avoid language-based differences in action presenta-

tion, and they did not have any experience with robots (The

majority of subjects had some experience working with computers,

M = 3.42, SD = 1.06 on a scale of 1 [no experience] to 5 [very

much experience], but subjects indicated that they had minimal to

no experience interacting with robots. M = 1.24, SD = 0.5 on the

same scale.). The study was gender-balanced and subjects were

equally distributed across four age groups (20–30 years, 30–40

years, 40–50 years and above 50 years). Additionally, equal gender

balanced numbers of subjects from each age group were randomly

assigned to three robot gazing behavior conditions.

Setup and Conditions
Each subject sat in front of the standing humanoid robot with a

table of 1 m width in between and had to present eight different

object manipulation actions to the robot (Figure 2, Figure 3, Movie

S1). These actions were simple everyday actions all subjects were

familiar with and were chosen to result in comparable executions

of the actions across subjects. They fell into two categories:

manner-crucial, and goal-crucial actions. In manner-crucial

actions, the manner and path are the most important features of

the action. As for example for the task to show how to clean a

window with a sponge, the movements are important and not

where the sponge is set down. For goal-crucial actions in contrast,

the goal position of the object is important, rather than how it got

there. For example, when a phone is hung up, it is important that

the handset is on the hook at the end, but it does not matter if it

reaches this position in a curved or straight movement.

To test the effect of the robot’s replication behavior (turn-based

feedback) (H2), the robot replicated the observed action according

to the two main ways of replicating a movement in human

children and apes: imitation and emulation [22]. These two ways

have been identified to manifest action understanding [19].

Imitation involves copying of the path and manner of the action

and reproducing the goal state. Emulation, in contrast, involves

the achievement of the goal state without copying the path and

manner of the movement. Thus, after the tutor’s turn of

demonstrating an action, the robot reacted either with a correct

or an incorrect replication behavior depending on the category of

action. In detail, for manner-crucial actions imitation should be a

correct replication behavior and emulation an incorrect replica-

tion behavior. In contrast for goal-crucial actions emulation should

be a correct replication behavior, whereas imitation should be an

incorrect replication behavior because imitation involves the

copying of incidental behavior which is unnecessary for the

Figure 2. Experimental setting. Human tutor is sitting across from
the robot learner at a table. Green marks on the table indicate the
starting points for both the tutor’s and the robot’s demonstrations.
Note that the individual in this Photograph (Figure 2) has
given written informed consent (as outlined in PLOS consent
form) to publication of her photograph.
doi:10.1371/journal.pone.0091349.g002
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demonstrated action. From the eight actions to be reproduced for

each subject, four actions (of which two were manner-crucial and

two were goal-crucial) were imitated by the robot, i.e. it

reproduced the trajectory of the object as exactly as possible

(Movie S1); four (of which analogously two were manner-crucial

and two were goal-crucial) were emulated, i.e. the robot

reproduced the end state only with a straight, goal-directed

movement (Movie S1) (for the technical realization, please refer to

the section on the technical setup below). After the robot’s

replication of the action, the subject could choose to demonstrate

the action again and the robot reproduced the action once more,

forming an interaction loop, which repeated until the subject

decided to stop. The robot replicated a certain action always in the

same way (either imitation or emulation) and for that action did

not change its replication behavior.

To test the effect of online feedback (H3), each subject was

presented with one of three robot eye gaze behaviors (see below

and Movie S1): (a) social gaze to simulate action understanding

and attention and (b) random and (c) static gaze as control

conditions. For online feedback, we chose a between-subjects

design to prevent subjects’ experience in one condition from

affecting the subjects’ behavior in subsequent conditions. Task

order and actions belonging to a reproduction condition were

randomized within the above constraints. During interactions we

tracked object movements and employed these trajectories to

compute objective measurements about movement properties (see

section on computational measures below). After the eight tasks

had been completed, the subjects filled out a questionnaire and

were interviewed.

Online Feedback Conditions and Interaction

Details. The experiment involved three robot gaze behavior

conditions: Social gaze, random gaze, and static gaze. The robot’s

gaze was initially pointed at a fixed scene position (i.e., a point

between the face of the tutor and the table).

The social robot gaze behavior was designed to reflect the

learner’s behavior observed in adult-child tutoring interactions

[23]. The robot either exhibited attentive gaze following the object

movements or anticipating expected end positions of the

transported object. The object was initially set down at the

participant’s start position by the experimenter. At this point, the

robot shifted its gaze toward the object. During the participant’s

action demonstration, the robot gave continuous online feedback

by following the moving object with its gaze depending on the

turn-based feedback condition:

N Imitation: The robot followed the object with its gaze, until the

subject had finished the action demonstration (Movie S1).

N Emulation: The robot followed the object with its gaze for two

seconds and then switched its gazing direction toward a

predefined end position, anticipating where the object should

be set down (Movie S1).

At the specific point in time, right after the participant’s task

demonstration was complete, the robot initiated the replication by

gazing at the tutor’s face and then to the object, while reaching out

its right arm in the direction of the object. After that, the robot

followed the object, until the experimenter placed it into the

robot’s hand. Then the robot began the action replication. The

social gaze condition additionally included a behavior after the

robot replicated the action. While setting down the object on the

table after the action replication was complete, the robot gazed at

the object and after that at the tutor encouraging the tutor to react

to the shown replication.

For the random gazing condition, the robot’s gaze had five

directions between which it alternated beginning when the object

was set down at the start position (Movie S1). The duration of the

gaze intervals and probability of occurrence of a specific direction

were designed to follow random distributions modelled after 12 to

24 months old children’s gaze directions during action demon-

strations in parent-infant interactions. The intervals and gaze

directions were investigated and corresponding statistics calculated

on an existing corpus of video recorded adult-child and adult-adult

interactions [4]. In a semi-experimental setting, parents were asked

to present a set of manipulative tasks both to their infant and to

another adult. The fix points of the children’s gaze behavior were

annotated and divided into four classes, of which only three were

considered and their likelihood was calculated.

1. Gaze to object: 88.41% to cover all relevant positions of the

tutoring situation and task, this figure was divided into three

equally distributed classes for the robot:

N Object: 29.47%.

N Start position: 29.47%.

N End position: 29.47%.

2. Gaze to tutor’s face: 10.87%.

3. Gaze to tutor’s stationary hand: 0.72%.

4. Gaze elsewhere: The fourth class of all gaze anywhere other

than to the object, the parent or the stationary hand was not

taken into account because the random gaze condition aimed

at controlling the timing of gaze to relevant positions, but was

not designed to include gaze to positions entirely irrelevant to

the task, which - independent of the timing of gaze - trigger

attention getters at any given moment.

Figure 3. Items, task instructions, and example trajectories.
doi:10.1371/journal.pone.0091349.g003
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Figure 4. Technical setup. For sensing the subject’s movements, a Vicon system with 8 IR cameras (blue) was used. Additionally the object’s
position was tracked using a Polhemus Liberty magnetic-field-based tracking system (dark grey). This information was fed into the ‘‘robot control
system’’ for generating appropriate robot behavior. For evaluating the study, additional data was recorded by 2 RGB cameras (green) directly
synchronized with Vicon, 2 RGB cameras in the robot’s head, 2 high-definition cameras (red) and an additional simple hand camera (light red) for
showing interesting scenes during the interview after the study.
doi:10.1371/journal.pone.0091349.g004

Robots Show Us How to Teach Them

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e91349



For the duration of gaze intervals to each of the three gazing

directions, log-normal distributions were fit to the histograms of

the data obtained from the corpus to serve as probability

distributions for the modelled random gaze behavior (see Figure

S1). The log-normal distributions have the following parameters:

1. Gaze to object (equal for all sub-classes): m = 20.246,

s= 0.926.

2. Gaze to parent’s face: m= 20.586, s= 0.772.

3. Gaze to tutor’s stationary hand: m= 20.455, s= 0.711.

After the participant’s action demonstration, the robot gazed to

the fixed scene position between the table and the tutor’s face and

initiated the replication by lifting its arm to reach for the object.

Concerning the end of the robot’s replication, in this gazing

condition, the robot gazed to the fixed scene position as well when

releasing the object.

In the static gazing condition, the robot maintained the fixed

scene gazing direction at all times (Movie S1). This direction was

chosen between the face of the tutor and the height of the starting

point of the task, such that the tutor had the impression the robot

had witnessed the demonstration. After the action demonstration,

the robot’s gaze remained unchanged as it reached for the object

to initiate the replication. The robot also gazed to the fixed scene

position when releasing the object at the end of the robot’s

replication in this gazing condition.

For the time during which the robot replicated the movement,

no constraints were imposed on the robot’s head movements. This

allowed the robot to utilize more of its degrees of freedom, which

resulted in smoother and more natural movements.

Technical Setup. Figure 4 shows the technical setup of the

conducted study. As described earlier, subjects had to demonstrate

certain actions and the robot either imitated (precise reproduction

of the observation) or emulated (only end-point reproduction with

a straight movement) the observed action. Note that instead of

remote controlling the robot, all of its behavior was generated

autonomously based on the subject’s actions. This approach makes

the setup more realistic in terms of actual HRI compared to

typically employed Wizard-of-Oz remote control. For this, we

used a state machine mechanism based on earlier work [7]. This

state machine was set up such that certain actions of the subject

trigger certain robot behaviors and thus advance the interactive

sequence. We recorded the required information for doing so

using a Vicon motion capture system (for recording the subject’s

hand and head poses) and a Polhemus Liberty magnetic-field-

based tracking system (for recording the object position). This

information was fed directly into the robot control system, which

generated control commands for the robot.

Specifically, the start of a demonstration was identified by the

robot based on the object moving away from the start position

(distance to start position and velocity above certain thresholds).

The end of the demonstration was defined by the object being

located on the table, not moving and the subject’s hands moving

away from it (height of object position and object velocity below

certain thresholds, and distance from the object to the subject’s

right and left hand above a certain threshold). The trajectory of

the object was recorded between these key points and constituted

the detected action.

In the imitation feedback condition the demonstrated trajectory

was rotated (180u around the vertical axis) and clipped to fit the

robot’s working range so that the velocity of the demonstration

remained the same. In the emulation condition only the end point

of the recorded trajectory was used and the robot moved the

object straight to this point with a predefined velocity. As the focus

Figure 5. Definitions of measures of tutor behavior. A visual depiction for the measure roundness can be found in Figure S4 of the Supporting
Information.
doi:10.1371/journal.pone.0091349.g005
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of this user study is on imitation and emulation as forms of

feedback, no learning was involved (unlike in [7]). As stated earlier

the robot replicated each action always in one way (either

imitation or emulation) and did not change its replication behavior

for the same action.

For evaluating the study, we recorded extensive data:

N The complete robot state including joint space configuration

and state machine state.

N The subject’s head and hand positions and orientations.

N The object position and orientation.

N Video material (2 Vicon RGB cameras, 2 HD cameras, 2

robot on-board cameras, a separate hand camera).

Computational Measures
To be able to assess the behavior modifications in the tutors’

demonstrations, in MATLAB, we counted the number of times

each action was demonstrated to the robot. Additionally, we

calculated quantitative measures for movement properties on the

trajectory data for which we utilized the tracked object positions

obtained via the Polhemus Liberty system. The measures have

proven to reveal important modifications in tutoring behavior in

earlier work [4], [24]. We segmented the data stream into motions

and pauses based on the object velocity and the direction of

movement. For a sequence segmented as a motion, the path the

object travelled (PathTravelled) and the distance between start and

end point (Distance) were calculated. Additionally, the duration of

each motion (MotionDuration) and pause (PauseDuration) was

measured in seconds. The measures for movement properties of

the tutor behavior are described in the table in Figure 5. All

measures were computed for all objects and averaged over the four

goal-crucial actions on the one hand and the four manner-crucial

actions on the other hand.

Results

The following results from statistical analyses show that indeed

both factors, the subjects’ action knowledge and the robot’s

feedback, determined how the subjects demonstrated the actions.

Action Knowledge (H1)
The subjects’ action knowledge significantly influences the way

in which they demonstrate actions (Figure 6). Manner-crucial

actions were demonstrated significantly longer, faster, with

rounder movements, and significantly more range.

The subjects’ action knowledge was assessed using a paired-

samples t-test on the movement property measures calculated on

the first demonstration of each object and averaged over the four

goal-crucial actions on the one hand and the four manner-crucial

actions on the other hand. The action knowledge associated with

the object movement (goal- or manner-crucial) was considered a

within-subject factor in the repeated measures design. We included

only the tutors’ first demonstrations of each object in this analysis

because they were not influenced by the robot’s turn-based

feedback, yet.

Several significant differences have been found (Table 1). The

action length differed significantly across the two groups: goal

(M = 6.58 s, SD = 2.24) and manner (M = 9.81 s, SD = 3.9),

t(55) = 28.41, p,0.001. Thus, the subjects demonstrated man-

ner-crucial actions longer than goal-crucial actions.

In addition the same was revealed concerning the speed of the

demonstrations. Manner-crucial actions (M = 0.36 m/s, SD = 0.1)

were carried out faster than goal-crucial actions (M = 0.21 m/s,

SD = 0.06), velocity (Figure 6A): t(55) = 216.11, p,0.001, with

higher acceleration (manner-crucial: M = 2.01 m/s2, SD = 0.7,

goal-crucial: M = 1.1 m/s2, SD = 0.38), t(55) = 213.17, p,0.001,

and with higher pace (manner-crucial: M = 5.7, SD = 2.62, goal-

crucial: M = 3.09, SD = 1.66), t(55) = 26.81, p,0.001 (Figure 6B).

For the total length of motion pauses, the manner-crucial

actions (M = 15.17%, SD = 9.03) were demonstrated with less

pauses than the goal-crucial actions (M = 18.39%, SD = 9.52),

t(55) = 2.47, p,0.05 (Figure 6C). The manner-crucial actions

(M = 3.46, SD = 1.39) were also carried out with less roundness

than the goal-crucial actions (M = 1.43, SD = 0.43), t(55) = 210.28,

p,0.001.

For the average length of motion pauses, we did not find any

significant differences between manner-crucial actions (M = 0.44 s,

SD = 0.25) and goal-crucial actions (M = 0.47 s, SD = 0.25),

t(55) = 1.01, p = 0.317.

For range the results show that subjects demonstrated manner-

crucial actions (M = 22.66, SD = 26.64) with a higher range than

goal-crucial actions (M = 5.02, SD = 3.96), t(55) = 25.1, p,0.001

(Figure 6D).

Turn-based Feedback (H2)
The robot’s turn-based feedback determines how often a subject

demonstrates an action (Figure 7, A and B). Emulated actions were

shown significantly more often than imitated ones. Manner-crucial

actions, which were emulated by the robot, were demonstrated a

higher number of times. Also emulated goal-crucial actions were

demonstrated more often than imitated goal-crucial actions,

however not significantly.

A two-way repeated measures ANOVA was conducted to

compare the effect of robot’s turn-based feedback behavior and

the tutor’s action knowledge on the number of the tutor’s

demonstrations in 2 (imitation, emulation) 62 (goal, manner)

conditions. Results revealed a significant interaction effect

(L= 0.71, F = 16.23, p,0.001) and a significant main effect of

robot’s feedback behavior on the number of times the tutor

repeated the demonstration, Wilks’ Lambda, L= 0.22,

F(1,40) = 140.93, p,0.001 (Table 2). According to the main effect,

subjects repeated the demonstration more often, when the robot

emulated (M = 2.64, SD = 0.75) than when it imitated (M = 1.56,

SD = 0.57) the action (Figure 7A). Further, the test revealed

another main effect for action knowledge (L= 0.71, F = 16.45, p,

0.001) which indicated more repetitions for manner-crucial actions

(M = 2.25, SD = 0.66) than goal-crucial actions (M = 1.95,

SD = 0.66). A Scheffé post hoc comparison indicated that the

feedback effect was greater in the manner-crucial action knowl-

edge condition than in the goal-crucial condition and revealed that

the highest number of demonstrations was carried out, when a

manner-crucial action was presented, which the robot emulated

(M = 2.99, SD = 0.83) (Figure 7B). All comparisons between

conditions revealed significance (p,0.001), except the comparison

between imitated goal-crucial and imitated manner-crucial actions

(p = 0.96). Additionally, to protect against violating the assumption

of normality, we applied a logarithmic transformation to the

variables and obtained results of the same significance.

The first demonstration of an action, especially of the first

action, is a demonstration which is not influenced by the turn-

based feedback and thus can be considered a base-line condition of

the turn-based feedback. In [25], we investigated the first

demonstrations of the first action and compared it to the tutors’

subsequent second demonstrations of the same action after the

robot’s first replication. The main findings indicate that subjects

particularly emphasized important aspects of the action in a

second demonstration, when the robot showed a correct replica-
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tion to some extent. When the robot replicated the action

incorrectly, subjects simplified their second demonstrations. With

respect to the results presented here, this shows that tutors adapt

their action presentations according to the robot’s turn-based

feedback.

Online Feedback (H3)
The robot’s online feedback in terms of gaze behavior had an

impact on the tutor’s on-going action demonstration (Figure 7, C

and D). When the robot was in the social gaze condition, the

subjects demonstrated the actions significantly slower compared to

the static gaze condition.

The effect of the online feedback behavior on the movement

properties of the demonstration the tutor carried out, was

considered using a one-way between subjects ANOVA in the

social gaze, random gaze, and static gaze conditions. Here, also,

only the first demonstrations of the actions were considered.

Figure 6. Mean values for movement measures as a function of action knowledge condition. Paired-sample t tests (df = 53) revealed
significant differences between conditions for the presented movement measures, (A), velocity (t = 216.11, p,0.001), (B), pace (t = 26.81, p,0.001),
(C), total length of motion pauses relative to action length (t = 2.47, p = 0.017), and (D), range (t = 25.1, p,0.001). Additionally, the measures action
length, acceleration, and roundness revealed significance. Error bars represent standard errors.
doi:10.1371/journal.pone.0091349.g006

Table 1. Statistical results of action knowledge influence on tutor behavior.

Action knowledge

Measure of tutor behavior Action category: Goal Action category: Manner

M SD M SD t p

Action length 6.58 2.24 9.81 3.9 28.41 0.000

Velocity 0.21 0.06 0.36 0.1 216.11 0.000

Acceleration 1.1 0.38 2.01 0.7 213.17 0.000

Pace 3.09 1.66 5.7 2.62 26.81 0.000

Total length of motion pauses 18.39 9.52 15.17 9.03 2.47 0.017

Average length of motion pauses 0.47 0.25 0.44 0.25 1.01 0.317

Roundness 1.43 0.43 3.46 1.39 210.28 0.000

Range 5.02 3.96 22.66 26.64 25.1 0.000

doi:10.1371/journal.pone.0091349.t001
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There was a significant effect of robot’s online feedback on the

velocity and acceleration of the presentation, velocity:

F(2,53) = 7.302, p,0.01 and acceleration: F(2,53) = 8.824, p,

0.001 (Figure 7D) (Table 3). A Scheffé test was used to make post

hoc comparisons between conditions. It revealed that subjects in

the social gaze condition demonstrated significantly slower

(velocity: M = 0.24 m/s, SD = 0.08, acceleration: M = 1.27 m/s2,

SD = 0.53) than in the static gaze condition (velocity: M = 0.32 m/

s, SD = 0.07, acceleration: M = 1.87 m/s2, SD = 0.53), velocity: p,

0.01 and acceleration: p,0.01. For velocity, the comparison

between the other groups did not reveal any significant results

(random gaze: M = 0.28 m/s, SD = 0.13; compared to social gaze

p = 0.22, compared to static gaze p = .125). For acceleration the

test uncovered that subjects in the random gazing condition

(M = 1.51 m/s2, SD = 0.39) also demonstrated with a lower

acceleration than subjects with static robot gaze (M = 1.87 m/s2,

SD = 0.53), p,0.05. We did not find significant differences

between the social and the random gaze conditions, p = 0.268.

Likewise, there was a significant effect of robot’s online feedback

on the action length of the presentation, F(2, 53) = 4.18, p,0.05

(Figure 7C) (Table 3). Again a Scheffé test was used to make post

hoc comparisons between conditions. It revealed that subjects in

the social gaze condition (M = 8.98 s, SD = 2.98) demonstrated

significantly longer than in the static gaze condition (M = 6.74 s,

SD = 2.23), p,0.05. Additionally, a statistical trend for subjects to

demonstrate longer in the random gaze condition (M = 8.89 s,

SD = 3.45) than in the static gaze condition was found, action

length: p = 0.056, but no difference was found between the social

and random gaze conditions, p = 0.995.

The other measures (pace, total and average length of motion

pauses, roundness, and range) did not reveal any significant

differences between conditions (please refer to Table 3 for details).

The questionnaire and interview results are presented and

discussed in Text S1, Figure S2, and Figure S3 of the Supporting

Information.

Discussion

Summarizing our results, the presented study yields insights into

how inexperienced tutors signal what is relevant about an action

that they teach a learning humanoid robot. It revealed that the

user’s action demonstration strongly depends on the feedback that

the robot gives. It is not the action knowledge of the tutor alone

that shapes the tutor’s action demonstration. Instead, it is also the

feedback of the learner – in the form of action replication and eye

gaze, indicating what has been understood – that influences

repetition of action demonstration and modification of the tutor’s

movements.

In our study, we considered social, random, and static robot

gaze behavior for online feedback. Our findings revealed that in

the social gaze condition tutors demonstrated the actions slower

than in the static gaze condition. This finding is in accordance with

qualitative studies which have shown that tutors do not adapt their

demonstrations to a robot with static gaze, but sequence their

Figure 7. Influence of robot feedback on tutors’ action demonstrations. (A and B), Mean values for number of repetitions as a function of
turn-based feedback condition and action knowledge. A two-way repeated measures ANOVA (df = 40) revealed a significant interaction effect
(L= 0.71, F = 16.23, p,0.001) between conditions, (A) a main effect for turn-based feedback (L= 0.22, F = 140.93, p,0.001), and a main effect for
action knowledge (L= 0.71, F = 16.45, p,0.001). (B) A Scheffé post hoc comparison indicated that the turn-based feedback effect was greater in the
manner-crucial action knowledge condition than in the goal-crucial condition. Error bars represent standard errors. (C and D) Mean values for
movement measures as a function of online feedback. A one-way between subjects ANOVA (df = 53) revealed significant differences between gaze
conditions for the presented movement measures, (C) action length (F = 4.18, p = 0.021) and (D) velocity (F = 7.302, p = 0.002). Scheffé tests used to
make post hoc comparisons between conditions revealed that subjects in the social gaze condition demonstrated significantly slower and longer
than in the static gaze condition (velocity: p = 0.002, action length: p = 0.049). The comparison between the other groups did not reveal any
significant results. Additionally, significance was found for the measure acceleration. Error bars represent standard errors.
doi:10.1371/journal.pone.0091349.g007
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actions and adjust their movements on a micro-level to the robot’s

social gaze [26]. Slower demonstrations could be beneficial for

the system’s learning mechanism, as research on adult-child

interaction suggests tutoring behavior toward infants to be slower

than in adult-directed interaction [4], [24]. However, the results

did not reveal any significant differences between the social and

the random gaze behavior conditions. Whereas the random gaze

behavior does not signal understanding, it seems to ’open a

channel of communication’ to the tutor, who uses it and adapts his

demonstration accordingly. Measures concerned with the struc-

ture and form of the action (i.e., pace, total and average length of

motion pauses, roundness, and range) seem similar in all three

conditions.

We operationalized action knowledge as goal- vs. manner-

crucial actions and tutors’ action demonstrations differed accord-

ing to these categories.

Concerning the robot’s turn-based feedback, one important

observation was that tutors repeated the imitated goal-crucial

actions less often than the emulated goal-crucial actions suggesting

that they considered it more correct when the robot imitated goal-

crucial actions than when it emulated them. On the one hand, this

fact could be explained by the tutor’s tendency to omit

unnecessary and incidental movements during the action demon-

strations, which the robot would have reproduced in the imitation

condition. On the other hand, this could indicate that subjects also

pay close attention to the fine details of goal-crucial actions, which

they interpreted as also involving a certain manner, which was

reproduced by the robot in the imitation, but not in the emulation

condition. That is, tutors generally tended to treat the imitation

behavior of the robot as more correct than its emulation behavior,

regardless of the action. This is in line with findings from Gergely

& Csibra [27] who found that human infants as opposed to apes

prefer imitation behavior [28]. They argue that imitation is a

necessary capability when learning actions with goals that are

opaque to the observer. Our results extend this insight by the

observation that (a) human tutors also apply their teaching

strategies to non-human entities such as robots and (b) there is an

interactional loop, in which the tutor receives important additional

information from the learner about how to design and specify

subsequent demonstrations and explanations based on the

received feedback.

Conclusion

Robots can benefit from this information eliciting mechanism

by actively modulating their feedback with the goal of reducing

ambiguities in the tutor’s demonstration. Due to the high amount

of uncertainties in such demonstrations, and in order to keep the

number of demonstrations reasonably low, it will be necessary to

develop truly interactive learning systems that make use of social

cues instead of only relying on statistical learning. Thus, we

advocate the paradigm to consider an interactional loop for robot

learning. According to our results, successful robot strategies for

discriminating between goal- and manner-crucial actions and

thereby finding what is relevant to a shown action entail (a)

sensitivity to the signals of the tutor, such as movement speed,

range or roundness of movements, and (b) active and explicit

probing of hypotheses e.g. by deliberately emulating actions which

leads to more distinctive tutor behavior for goal- vs. manner-

crucial actions.
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Figure S1 Log-normal distributions for the three gaze
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Figure S3 Participants’ perception of turn-based feed-
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knowledge (goal-, manner-crucial actions) and replication condi-

tions (imitation, emulation) as well as the three online feedback
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