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Abstract—In developmental research, tutoring behavior has
been identified as scaffolding infants’ learning processes. It has
been defined in terms of child-directed speech (Motherese), child-
directed motion (Motionese), and contingency. In the field of
developmental robotics, research often assumes that in human-
robot interaction (HRI), robots are treated similar to infants,
because their immature cognitive capabilities benefit from this
behavior. However, according to our knowledge, it has barely
been studied whether this is true and how exactly humans alter
their behavior towards a robotic interaction partner. In this
paper, we present results concerning the acceptance of a robotic
agent in a social learning scenario obtained via comparison to
adults and 8-11 months old infants in equal conditions. These
results constitute an important empirical basis for making use of
tutoring behavior in social robotics. In our study, we performed a
detailed multimodal analysis of HRI in a tutoring situation using
the example of a robot simulation equipped with a bottom-up
saliency-based attention model [1]. Our results reveal significant
differences in hand movement velocity, motion pauses, range of
motion, and eye gaze suggesting that for example adults decrease
their hand movement velocity in an Adult-Child Interaction
(ACI), opposed to an Adult-Adult Interaction (AAI) and this
decrease is even higher in the Adult-Robot Interaction (ARI).
We also found important differences between ACI and ARI in
how the behavior is modified over time as the interaction unfolds.
These findings indicate the necessity of integrating top-down feed-
back structures into a bottom-up system for robots to be fully
accepted as interaction partners.

I. INTRODUCTION

Learning in human children is not only a concern of an
individual. It has been shown that it is a social endeavor and
children get support from the social partner on multimodal
levels: Adults can not only adjust their speech [2], but also
their gesture [3] and motion [4], [5]. It has also been shown
that children not only prefer [6], but also can benefit from
these modifications [7]. This benefit has attracted attention
of research in developmental robotics. The objective is here
that if the interaction between a robot and its user could
be designed based on the child-adult interaction, the robot –
similar to the child – could obtain the more structured and
enriched input and benefit from it in its learning process [1],
[8], [9]. This is particularly interesting for learning actions,
since – without support and only by observation – it is difficult
for a robot to decide what and when to imitate [10], [11].
With these problems in mind, it has been suggested that using

modifications in tutors’ behavior, a robot could learn to detect
the meaningful structure of the demonstrated action [1], [8].
However, we do not know yet the crucial characteristics that
establish a natural tutoring situation. It has been assumed that
a robot – because of its immature cognitive capabilities –
can trigger a tutoring behavior in its interaction partner [12].
However, this assumption has barely been studied. Recently,
a study by Herberg and his colleagues [13] investigated
the question whether people will modify their actions for
computers. They presented a picture of an interaction partner
to the subjects, which varied in dependence on the condition:
a child, an adult and a computer together with a monitor and a
mounted camera on it in a second condition [13]. The authors
found that subjects modified their actions when speaking to a
computer. The modifications differed from how they interacted
with a picture of a child or adult. Herberg and his colleagues
[13] interpret the difference in terms of assigning – to the
persons, but not to the computer – the capability of reasoning
about goals. However, it is difficult to expect from a user
to assign some capabilities just from viewing a picture. It
has been shown that subjects, when asked to speak to an
imaginary infant, were not able to produce speech that exhibits
all the features that are characteristic for motherese as it is
produced in real adult-infant interactions [14]. The results
from Herberg et al. should thus be interpreted with caution.
Also, interactions with a computer are differently processed by
subjects than interactions with robots especially with respect
to the assignment of intentions. In an fMRI study Krach
et al. [15] have shown that the brain area that is generally
associated with theory-of-mind (thus, the reasoning about the
others intentions) is significantly stronger activated when the
subjects thought they were interacting with a humanoid robot
than when they thought they were interacting with a computer.
Contingency describes situations in which two agents socially
interact with each other and Csibra and Gergely showed that
contingency is a characteristic aspect of social interaction [10].
In the study published by Herberg et al. there is no possible
reactiveness in the interaction partner, so we argue that social
interaction cannot take place.

In this work we therefore present results from real inter-
actions with an embodied simulated robot based on the as-
sumption that real interaction is needed in order to coordinate



the behavior with the partner and to open up for mutual
influence [16]. We think that only such a scenario can create
an environment in which we can find out about the crucial
characteristics of a natural tutoring situation.
In our study, similar to Herberg et al. [13], we pursued the
question of whether people will modify their actions when
interacting with a machine. In contrast to Herberg et al., who
used a computer, we investigated the interaction with a virtual
robot. For our purpose, we analyzed real interactions – and not
just a picture of the partner as in the previous study – with
the artificial system and compared the results to the results
obtained from real interactions with a child and an adult. For
our analysis, we applied a battery of measurements allowing
for a fine-grained analysis of performed motions and their
changes in the interaction as it unfolds.

II. EXPERIMENT

Data was obtained in two experiments. The data on adult-
child interaction was obtained in the Motionese experiment,
which is based on the same setting as in [8] and [1]. The
data on human-robot interaction was obtained in the second
experiment.

A. Motionese Experiment (ME)
1) Subjects: The Motionese Corpus consists of infant- and

adult-directed interactions. We selected the younger group
comprising 12 families of 8 to 11 months old children. Both
parents were asked to demonstrate functions of 10 different
objects to their children as well as to their partners or another
adult. In the following, we focus on the analysis of the stacking
cups task, because it offers the best comparability in motion
performance. We further selected a subgroup of 8 parents (4
fathers and 4 mothers) for the ACI and a subgroup of 12
parents (7 fathers and 5 mothers) for the AAI, because of the
quality of the video, sound and due to the way in which the
action was performed. More specifically, the order in which
the cups of the considered stacking-cups task are put together
can vary: We selected only those parents, who started the task
by putting the first cup into the target cup which means putting
the green cup into the blue one (see Fig. 3 a1).

2) Setting: Parents were instructed to demonstrate a
stacking-cups task to an interaction partner. The interaction
partner was first their infant and then an adult. Fig. 1 illustrates
the top-view of the experimental setup, and shows sample
image frames of cameras which were set behind the parent
and the interaction partner and focused on each of them. The
stacking-cups task was to sequentially pick up the green (a1),
the yellow (a2), and the red (a3) cup and put them into the
blue one on the white tray.

Fig. 1. Motionese Setting, there are two cameras which are recording the
scene. The interaction partners are seated across from each other and the
object is laid on the table in front of the tutor.

B. Robot-Directed Interaction Experiment (RDIE)

1) Subjects: 31 adults (14 females and 17 male) partici-
pated in this experiment 7 out of which were parents as well.
Out of this group, we selected 12 participants (8 female and
4 male), who performed the task in a comparable manner.

2) Setting: The participants were instructed to demonstrate
several objects to an interaction partner, while explaining
him/her how to do it (Fig. 2). Again we chose the stacking-
cups task for analysis. The interaction partner was an infant-
like looking virtual robot with a saliency-based visual attention
system [1]. The robot-eyes will follow the most salient point in
the scene, which is computed by color, movement, and other
features (see [1] and Fig. 4).

Fig. 2. Robot-directed Interaction Setting, there are four cameras which are
recording the scene. The subject is seated across from the robot and the object
is laid on the table in front of the tutor.

III. DATA ANALYSIS

The goal of this paper was to analyze tutoring behavior from
two perspectives, Motionese and Contingency. For this reason,
we analyzed Motionese and Contingency features. We coded
the videos semi-automatically to obtain data for the 2D hand
trajectories and the eye gaze directions.

Fig. 3. This graphic shows an example for the structure of an ’Action’,
’Subaction’, and ’Movement’.

A. Annotations

For all annotations, we used the video captured by camera
(cam) 1, see Fig. 1 and 2. It shows the front view on the
demonstrator and is therefore best suited for action, movement,
and gaze annotations, which are discussed in detail below.

1) Motionese:
Action Segmentation: For analyzing the data, the action of
the stacking-cups and additionally, the sub-actions (a1-a3) of
grasping one cup until releasing it into the end position (Fig.
3) were marked in the video. We defined

1) action as the whole process of transporting all objects
to their goal positions.

2) subaction as the process of transporting one object to its
goal position.



3) movement as phases where the velocity of the hand is
above a certain threshold. All other phases are defined
as pauses.

Hand Trajectories: The videos of the two experiments were
analyzed via a semiautomatic hand tracker system (Fig. 4).
The system is written as a plugin for a graphical plugin shell,
iceWing [17], and makes it possible to track both hands with
an Optical Flow based algorithm, Lucas & Kanade [18]. The
system allows manual adjustment in case of tracking deviation.
We used this tracking system instead of the previously used
3D body model system, [8], since 3D results in [8] were not
significant, we focused on 2D analyses which provide to show
more stable results. Additionally, the new system is easily
accessible for non-expert users.

Fig. 4. In the left picture, the red and violet circles depict the tracking regions
which are tracked by the hand tracker system. The points in the middle of the
circles are the resulting points for the 2D hand trajectory. In the right picture,
the virtual robot we used is shown.

2) Contingency:
Eye Gaze: In annotating the eye gaze directions with the pro-
gram Interact (Mangold), we distinguished between looking at
the interaction partner and looking at the object (Fig. 5).

Fig. 5. These three pictures show the difference between looking to the object
(left), looking to the interaction partner (middle) and looking somewhere else
(right).

B. Measures

For quantifying Motionese and Contingency, we computed
seventeen variables related to the 2D hand trajectories derived
from the videos and the eye gaze bout annotations produced
with Interact.

1) Motionese: We operationalized Motionese in terms of
velocity, acceleration, pace, roundness, and motion pauses as
defined in [8]. Rohlfing et al. automatically segmented the task
into movements and pauses based on hand velocity.

Velocity was computed using the derivative of the 2-
dimensional hand coordinates of the hand which performed
the action per frame. Rohlfing et al. did not find a significant
effect for velocity for the 3D posture tracking data. Their 2D
hand tracking data showed the statistically significant trend
that hand movement in AAI is faster than in ACI.

Acceleration is thus defined as the second derivative of the
hand trajectory.

Pace was defined for each movement by dividing the
duration of the movement (in ms) by the duration of the
preceding pause (in ms). For pace, Rohlfing et al. found nearly
significant differences comparing ACI and AAI. Their results
suggest that pace values in ACI are lower than in AAI.

Roundness of a movement was defined by covered motion
path (in meters) divided by the distance between motion on-
and offset (in meters). Thus, a higher value in roundness means
rounder movements. Rohlfing et al. found that hand movement
is significantly rounder in AAI compared to ACI.

Frequency of motion pauses was defined as the number
of motion pauses per minute. Therefore, the number of mo-
tion pauses was computed automatically using the above-
mentioned segmentation, see Fig. 3. Further, the average
length of motion pauses (in frames) and total length of
motion pauses as the percentage of time of the action without
movement were computed.

Additionally, we focused on the trajectory during the actual
transportation of the cups, when performing the task. For each
video and setting, the exact video frames of the beginnings
and ends of the transportation for each of the three cups were
annotated by hand, again see Fig. 3. This way, we were able
to define variables for each individual subaction (a1, a2, a3)
and also detect changes in the demonstrator’s behavior in the
course of fulfilling the task.

Subaction specific velocity was computed as the average
velocity for subactions a1, a2, and a3 each.

Subaction specific acceleration was computed analogously
as the average acceleration for subactions a1, a2, and a3.

Range was defined as the covered motion path divided by
the distance between motion, i.e. subaction, on- and offset.

Action length denoted the overall action length and was
measured from the beginning of subaction a1 to the end of
subaction a3.

2) Contingency: J.S. Watson thinks of contingency as the
human infant’s means for detecting socially responsive agents
and therefore postulates the existence of an innate contingency
detection module as one of the most fundamental innate
modules. He formally defines the contingent temporal relation
of two events, for example a response R and a stimulus reward
S∗, as two conditional probabilities. The first, called the suffi-
ciency index, measures the probability of a stimulus reward S∗
given a span of time t following a response R, P (S∗|Rt). The
second, called the necessity index, measures the probability of
the response given time span t prior to the reward stimulus,
P (R|tS∗) [19]. ”Contingency detection is crucially involved
in an infant’s progressively developing awareness of his or
her internal affective states” [10]. ”The discovery that another
agent’s gaze is a cue worthy of monitoring relies on the infant’s
ability to detect the contingency structure in interactions with
that agent” [20]. The Contingency of the interactions was
quantified in terms of variables related to eye gaze, as defined
in [21] for measuring interactiveness.

Frequency of eye-gaze bouts to interaction partner, i.e.
eye gaze bouts per minute, was computed from the Interact
annotations. Also, the average length of eye-gaze bout to



interaction partner and the total length of eye-gaze bouts to
interaction partner as the percentage of time of the action
spent gazing at the interaction partner were computed. Brand
et al. found that infants received significantly more eye-gaze
bouts per minute [21], so the frequency of eye-gaze bouts to
the interaction partner was significantly higher in ACI than in
AAI. The total and average length of eye-gaze bouts to the
interaction partner in their study was significantly greater in
ACI than in AAI. Equivalent measures were calculated for the
eye gaze on the demonstrated object. Namely, we obtained
values for frequency of eye-gaze bouts to object, average
length of eye-gaze bout to object, and total length of eye-gaze
bouts to object as the percentage of time of the action spent
gazing at the object.

IV. RESULTS

Table I depicts the results of the study.

A. Motionese

A non-parametric test (Mann-Whitney U test) was run for
all pairs of samples, ACI vs. AAI, ACI vs. ARI, and AAI
vs. ARI. For velocity, the test revealed significant differences
for ACI vs. AAI and ACI vs. ARI, and highly significant
differences when testing AAI vs. ARI. These results show that
in ARI hand movements are significantly slower than in ACI
and hand movements in ACI are significantly slower than in
AAI.
For the subaction specific velocity measure, which only takes
into account the hand movement during the transportation of
the respective cup, the results were even more significant. For
all pairs of conditions, we also found significant differences
for all three subactions. These results clearly show that in
AAI hand movements are very fast compared to ACI and ARI
and additionally that hand movement is slowest in the ARI
condition. Also note that for all conditions the mean values
increase for the consecutive subactions. This also holds for
the variances, i.e. mean and variance for the velocity of hand
movement in subaction a3 are greatest. In the ARI, the rate in
which the mean values increase is slowest.
The tests showed no significance for acceleration in ACI
vs. AAI and ACI vs. ARI, but show a trend which is that
acceleration of hand movement in ACI is smaller than in AAI
and greater than in ARI. They show significant results for AAI
vs. ARI conditions, i.e. in AAI, hand movement acceleration
is significantly greater than in the ARI.
Viewing this measure again for only the transportation of
the cups in the different subactions, the test results reveal
significant differences and statistical trends for all pairs of
conditions and almost all subactions. Results suggest that
subaction specific acceleration of hand movement is lower
in ACI than in AAI. The mean values for each consecutive
subaction increase for both conditions, so that results for a2
revealed significance, whereas results for a1 and a3 show a
trend. Also hand movement acceleration is highly significantly
lower in ARI than in AAI. For ACI vs. ARI results reveal
significance for a3 and a trend for a2. Note again that for ARI

mean values increase at a lower rate.
Pace results revealed highly significant differences for AAI
vs. ARI and significant differences for ACI vs. ARI and ACI
vs. AAI. The latter confirms the findings in [8] that pace in
AAI is higher than in ACI. The results indicate ARI having
significantly slower pace than AAI and ACI and ACI having
significantly slower pace than AAI. Note that the variance of
pace in ARI is very small.
The results for the roundness measure show that movement
is roundest in AAI compared to the other two conditions.
Differences between ACI and AAI, and AAI and ARI are
significant. No significance was found for ACI vs. ARI.
The range measure suggests that ARI exhibits the greatest
range and for this reason most exaggerated movement for all
subactions a1 to a3 and also that range is greater in ACI than
in AAI. For ACI vs. AAI results revealed significance for
subactions a2 and a3, and a trend for a1. For ACI vs. ARI
solely results for subaction a1 showed significance, a2 and
a3 did not. For AAI vs. ARI subactions a1 to a3 revealed
significance.
When analyzing motion pauses, tests revealed that in AAI the
frequency of motion pauses is significantly lower than in ACI
and ARI. For ACI vs. ARI no significant differences were
found.
The average length of motion pauses is significantly smaller
in the AAI condition than in the ACI and the ARI condition.
For ACI vs. ARI test results did not show significance, but
a statistical trend which is that values for ARI are greater
than for ACI. Comparing the total length of motion pauses,
results are again significant for ACI vs. AAI and AAI vs. ARI.
Hence, results show that the total length of motion pauses is
significantly smaller in AAI than in ACI and ARI.
The overall action length is greater in ARI than in ACI, where
the action length is again greater than in AAI. Adults thus take
more time, when demonstrating object functions to children
compared to demonstrating them to adults, but they take even
more time when demonstrating objects to a robot. The tests
showed that differences between ACI and AAI are significant,
as well as differences between AAI and ARI. Differences
between ACI and ARI were marginally not significant. Thus,
in general the movement in ARI appears to be even more
accentuated than in ACI.

B. Contingency

Most interestingly the results for eye gaze show a com-
pletely different picture. The contingency measures revealed
for frequency of eye-gaze bouts to interaction partner signifi-
cant differences for ACI vs. AAI and ACI vs. ARI, but not for
AAI vs. ARI. In ACI eye-gaze bouts to the interaction partner
were most frequent.
Testing the average length of eye gaze bout to interaction
partner, we found on average significantly longer bouts in
ACI than in AAI and ARI and a trend for AAI vs. ARI.
For total length of eye-gaze bouts to interaction partner they
showed that in ACI significantly more time was spent gazing
at the interaction partner than for AAI and ARI. Differences



Variable ACI ARI AAI ACI vs AAI ACI vs ARI AAI vs ARI
M SD M SD M SD Z Z Z

velocity 0.17 0.06 0.29 0.07 0.12 0.03 −3.086** −2.315* −3.926***
velocity a1 4.33 1.71 7.89 2.01 2.95 0.82 −2.855** −2.006* −4.041***
velocity a2 5.9 2.25 11.14 2.38 3.59 1.16 −3.318*** −2.546* −4.157***
velocity a3 7.24 2.42 13.93 3.75 4.83 1.66 −3.163** −2.469* −3.984***
acceleration 0.05 0.03 0.08 0.03 0.03 0.01 −1.697+ −1.929+ −3.637***
acceleration a1 1.18 0.64 1.75 0.56 0.78 0.37 −1.929+ −1.543 −3.233***
acceleration a2 1.58 1.06 2.93 0.84 0.84 0.34 −2.700** −1.852+ −4.157***
acceleration a3 2.67 1.27 3.88 1.53 1.19 0.57 −1.929+ −2.777** −3.926***
pace 17.68 32.78 56.03 39.69 4.25 1.98 −2.415** −1.774* −3.703***
roundness 2.87 2.49 7.26 2.71 1.73 0.30 −2.855*** −0.231 −4.099***
total length m.p. 16.89 11.29 1.46 2.9 28.08 11.25 −3.091** −1.543 −4.270***
frequency m.p. 37.88 14.28 23.28 10.56 40.05 7.1 −2.006* −0.154 −3.175***
average length m.p. 5.92 3.68 0.58 1.14 11 5.39 −3.174** −1.852+ −4.270***
range a1 2.54 1.07 1.76 0.42 4.09 1.52 −1.929+ −2.392* −3.926***
range a2 1.69 0.41 1.33 0.18 1.81 0.44 −2.083* −0.772 −3.175***
range a3 1.45 0.25 1.24 0.18 1.64 0.4 −2.392* −1.312 −3.002**
action length 9.68 4.2 3.65 1.11 14.41 5.66 −3.240*** −1.697+ −4.157***

total length eye-gaze to i.p. 36.38 22.61 7.78 9.65 9.99 13.25 −2.815** −2.633** −0.539
frequency eye-gaze to i.p. 33.96 10.13 11.84 14.43 8.93 8.11 −2.893** −3.640*** −0.120
average length eye-gaze to i.p. 0.94 0.39 0.22 0.29 0.45 0.41 −3.127*** −2.556** −1.438+
total length eye-gaze to o. 59.48 23.17 90.74 11.31 88.87 14.13 −2.971** −2.788** −0.360
frequency eye-gaze to o. 35.34 6.43 28.12 14.73 12.68 5.83 −1.852+ −3.626*** −3.233***
average length eye-gaze to o. 1.3 0.76 5.74 3.36 10.04 9.72 −3.086** −3.549*** −0.924

TABLE I
RESULTS OF MEAN, STANDARD DEVIATION, MANN-WHITNEY U TEST, +p <0.1, ∗p <0.05, ∗ ∗ p <0.01, ∗ ∗ ∗p <0.001, MOTION PAUSES (m.p.),

INTERACTION PARTNER (i.p.), OBJECT (o.). (DUE TO RESULTS IN [8] AND [21], WE PERFORMED A ONE-TAILED ANALYSIS FOR PACE, ROUNDNESS, AND
AVERAGE LENGTH EYE-GAZE TO i.p.)

Compared to AAI, ACI shows Compared to ACI, ARI shows Compared to AAI, ARI shows
slower hand movement slower hand movement slower hand movement
lower hand movement acceleration lower hand movement acceleration lower hand movement acceleration
smaller pace smaller pace smaller pace
less round movement less round movement
greater range and therewith more exagger-
ated movement

greater range and therewith more exagger-
ated movement in the first subaction

greater range and therewith more exagger-
ated movement

higher frequency of motion pauses higher frequency of motion pauses
greater average length of motion pauses greater average length of motion pauses greater average length of motion pauses
greater total length of motion pauses greater total length of motion pauses greater total length of motion pauses
longer action longer action longer action
more frequent eye-gaze bouts to the inter-
action partner

less frequent eye-gaze bouts to the interac-
tion partner

on average longer eye-gaze bouts to the
interaction partner

on average shorter eye-gaze bouts to the
interaction partner

more time spent gazing at the interaction
partner

less time spent gazing at the interaction
partner

higher frequency of eye-gaze bouts to object lower frequency of eye-gaze bouts to object lower frequency of eye-gaze bouts to object
smaller average length of eye-gaze bout to
object

greater average length of eye-gaze bout to
object

smaller total length of eye-gaze bouts to
object

greater total length of eye-gaze bouts to
object

TABLE II
THIS TABLE SHOWS A SHORT SUMMARY OF OUR RESULTS.

between AAI and ARI again are not significant.
For eye-gaze to the object, we found that frequency of eye-
gaze bouts to object is significantly lower in ARI than in the
other two conditions, ACI and AAI. Differences in ACI and
AAI were not significant.
Average length of eye gaze bout to object was significantly
smaller for ACI than for AAI and ARI. Here, differences
between AAI and ARI were not significant.
The same is true for the measure total length of eye-gaze bouts
to object. Values are significantly lower in ACI than in AAI
and ARI, where again differences between AAI and ARI did
not exhibit significance.

Fig. 6. This graph shows the mean frequency of eye-gaze bouts to interaction
partner and object (y-axis) over the whole action in every condition (x-axis).

V. DISCUSSION AND CONCLUSION

In sum, our results show a differentiated picture for modifi-
cations in human-robot interaction. On the one hand, we have



found that a robot receives even more strongly accentuated
input than an infant: almost all hand movement-related vari-
ables, when pooled over the whole action sequence, showed
a significant difference, or at least a trend, between the three
conditions with a clear ordering (AAI > ACI > ARI). ARI
movements can thus be characterized as slower (velocity,
acceleration, and pace), more exaggerated (range) than AAI,
and less round (roundness) than AAI movements. In contrast
to ACI, where the tutoring behavior seems to bear lots of
variability, in the ARI, more stability could be observed. This
suggests that ARI allows to control for the parameters of the
learner and is thus a promising method for studying tutoring
behavior. On the other hand, the contingency measurements
show less contingent eye gazing behavior in ARI than in ACI
(frequency and length of eye-gaze bouts to interaction partner).
These results raise an interesting question: Why is the behavior
of the tutors in the ARI condition less contingent than in
the ACI condition? As contingency is a bi-directional phe-
nomenon, it is likely to be related to the robot’s feedback
behavior. Indeed, while the frequency of motion pauses is
similar in ARI and ACI, the length of motion pauses is
significantly longer in ARI than in AAI and ACI indicating
that the tutor is waiting possibly in vain - for a sign of
understanding from the robot. The lower amount of eye-gaze
bouts to the interaction partner in ARI as opposed to ACI
could be interpreted similarly: as the tutor does not receive the
expected feedback of understanding from the robot, s/he does
not search for eye-contact with the robot. In future research,
we will focus more closely on feedback behavior and identify
the important signals in a bi-directional interaction.
These results have important consequences for human-robot
interaction in developmental robotics. They indicate that the
behavior of the robot shapes the behavior of the tutor. Al-
though all tutors showed strong modifications in their move-
ment behavior towards a robot, thus stressing important aspects
of the demonstrated action, they did not increase their contin-
gency behavior as other tutors would do in interactions with
infants. Even though the purely reactive behavior of the robot
in our study does induce parent-like teaching (as indicated in
a qualitative study by Nagai et al. [12]), it does not seem to
be sufficient to produce a contingent interaction. As studies
show, contingent behavior is an important feature for learning
in human development. Thus, in order for robots to be able
to learn from a human tutor, they should have the capability
to engage in a contingent interaction. Further analyses need to
be carried out with the goal to reveal what exactly causes the
tutor to decrease her contingent behavior in ARI.

A. Summary

For a short summary of our results see Table II.
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