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Enabling users to teach their robots new tasks at home is a major challenge for research

in personal robotics. This work presents a user study in which participants were asked to

teach the robot Pepper a game of skill. The robot was equipped with a state-of-the-art

skill learningmethod, based on dynamic movement primitives (DMPs). The only feedback

participants could give was a discrete rating after each of Pepper’s movement executions

(“very good,” “good,” “average,” “not so good,” “not good at all”). We compare the

learning performance of the robot when applying user-provided feedback with a version

of the learning where an objectively determined cost via hand-coded cost function and

external tracking system is applied. Our findings suggest that (a) an intuitive graphical

user interface for providing discrete feedback can be used for robot learning of complex

movement skills when using DMP-based optimization, making the tedious definition of

a cost function obsolete; and (b) un-experienced users with no knowledge about the

learning algorithm naturally tend to apply a working rating strategy, leading to similar

learning performance as when using the objectively determined cost. We discuss insights

about difficulties when learning from user provided feedback, andmake suggestions how

learning continuous movement skills from non-expert humans could be improved.

Keywords: programming by demonstration, imitation learning, CMA-ES, human-robot interaction, DMP, human

factors, optimization, skill learning

1. INTRODUCTION

Robots are currently making their entrance in our everyday lives. To be able to teach them
novel tasks, learning mechanisms need to be intuitively usable by everyone. The approach of
Programming by Demonstration (Billard et al., 2008) includes users to show their robot how
a task is done (for example via kinesthetic teaching), and the robot will then reproduce the
demonstrated movement. However, not all tasks can be easily demonstrated to a robot this way. For
example some tasks are only solved with very precise movements which are difficult to successfully
demonstrate for the user. Instead, it is often more feasible to let the robot self-improve from an
imperfect demonstration. Most research on robot learning aims primarily at optimizing the final
task performance of the robot, while disregarding the usability of the system by non-expert users.
In particular, Programming by Demonstration studies and, even more so the optimization, are
primarily tested in laboratory environments and rarely evaluated with human users, let alone with
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non-experts. The typical workflow for creating an optimization
system encompasses the definition of a suitable cost function,
which the system can evaluate to improve its performance.
Finding a cost function that will ensure the desired outcome of
the robot learning is far from trivial. In fact, often it is difficult
even for domain experts to define a cost function that does not
lead to unexpected behaviors by the robot. To be usable by non-
expert users, it is unrealistic to expect the user to design a cost
function in order to teach their robot a new skill. To make
things worse, many cost functions require an external sensory
setup (in addition to the robot’s on-board sensors) to measure
relevant features precisely enough for the computation of the
cost function—again, something which is feasible in a laboratory
environment, but not realistic for use at home by non-experts.

The general research topic of this work is thus to investigate,
whether it is possible to employ a state-of-the-art optimization
system in a user-centered setup: one that is intuitively usable by
non-experts, and could easily be operated outside the laboratory
(for example, it does not require expensive or difficult to calibrate
equipment). In particular, we concentrate on robot learning of
complex movement skills with a human teacher. As a method, we
chose optimization of Dynamic Movement Primitives (DMPs)
(see section 2) as a widely used method from the Programming
by Demonstration literature.

It is commonly assumed that the feedback humans provide
is a noisy and unreliable reward signal (e.g., Knox and Stone,
2012; Weng et al., 2013; Daniel et al., 2015): it is assumed that
humans do not provide an optimal teaching signal, and therefore
additional care should be taken when using the human-provided
signal in a robot learning system. In contrast, here we deliberately
chose to use an unaltered optimization system, without any
modifications to the learning algorithm for “dealing with” the
human-provided teaching signal or specific adaptations toward
the human. In doing so, we aim at demonstrating, as a baseline,
the performance of an unaltered, state-of-the-art Programming
by Demonstration setup trained using human feedback alone.
The only modification in our system is to replace the sensory-
based cost evaluation by an intuitive to use graphical user
interface, allowing the user to provide a discrete-valued feedback
to the robot after each movement execution.

1.1. Related Work
The field of Interactive Machine Learning (IML) aims to give
the human an active role in the machine learning process
(Fails and Olsen, 2003). It is a rather vast field including the
human in an interactive loop with the machine learner, ranging
from web applications to dialog systems, but also robots: the
learner shows its output (e.g., performance, predictions) and
the human provides input (e.g., feedback, corrections, examples,
demonstrations, ratings). In robotics, IML combines research on
machine learning (section 1.1.1) and human-robot interaction
(section 1.1.2).

1.1.1. Machine Learning With Human Teachers
Regarding machine learning research, there is a large body of
literature on incorporating human-provided reward signals into
reinforcement learning algorithms. The majority of approaches

focuses on the case where the action space of the robot is
discrete (e.g., Abbeel and Ng, 2004; Thomaz and Breazeal, 2008;
Chernova and Veloso, 2009; Taylor et al., 2011; Cakmak and
Lopes, 2012; Griffith et al., 2013; Cederborg et al., 2015), which
means that the robot already has to know the “steps” (or “basic
actions”) required to solve a task in advance: Related work in this
area includes the work of Thomaz et al., who investigated user
input to a reinforcement learning agent that learns a sequential
task in a virtual environment (Thomaz et al., 2006). They then
altered the learning mechanism according to the results of
their Human-Robot Interaction (HRI) studies. Also Senft et al.
recently presented a study with a virtual reinforcement learning
agent learning sequential tasks with user rewards (Senft et al.,
2017).

Here, in contrast, we are interested in the case of a continuous
action space, which would allow a human user to teach their
robot entirely new actions (which could in principle then also be
used as new “basic actions” in reinforcement learning methods
as the ones just mentioned). There is some existing work on
robot learning from user feedback where the robot’s action
space is continuous. Knox and Stone proposed the “TAMER”
framework, aimed at learning a model of the human-provided
reward, explicitly taking effects such as time-delayed responses
into account (Knox and Stone, 2009). TAMER has mostly been
used for learning in the case of discrete state and action spaces
(Knox and Stone, 2012; Knox et al., 2012a,b), but recently has also
been applied to traditional reinforcement learning benchmark
tasks involving continuous spaces (e.g., Vien and Ertel, 2012).
Similarly, Daniel et al. use Gaussian process regression and
Bayesian optimization in combination with relative entropy
policy search to estimate a reward function from user-provided
feedback. In contrast to these works, we do not estimate a
reward function but directly treat the user responses as teaching
signal to the learning algorithm, to evaluate if an unaltered
optimization algorithm in conjunction with DMPs can operate
on user-provided discrete scores, noisy or not.

Instead of requesting a score or reward value directly from the
user, it has been suggested to employ preference-based learning
(Christiano et al., 2017; Sadigh et al., 2017): the user is repeatedly
presented with two alternative performances by the robot or
agent, and is asked to select one over the other. Sadigh et al. used
such an approach to let users teach a simulated 2-dimensional
autonomous car to drive in a way deemed reasonable by the user
(Sadigh et al., 2017). Their system learned a reward function from
the human provided reward. However, the function estimation
relied on a set of predefined features to succeed in learning
from relatively little data. Like designing a cost function, also the
design of suitable feature representations for the cost function
estimation in itself can be challenging, and certainly is for
non-experts. Christiano et al. successively presented pairs of
short video clips showing the performance of virtual agents
(simulated robots in one task, and agents playing Atari games
in another task) to human participants, who then selected the
performance that they preferred (Christiano et al., 2017). Using
this feedback alone, the virtual agents were able to learn complex
behaviors. Christiano et al. also learn a model of the user-
provided responses. Interestingly, they were able to reduce the
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total amount of time humans had to interact with the learning
system (watch videos, provide feedback) to only about 1 h.
However, their work is based on deep reinforcement learning
methodology and thus requires the agent to train in total for
hundreds of hours, which poses a severe difficulty for application
in real robots on the one hand in terms of time necessary for
training, and on the other hand due to other factors such as
physical wear down. In contrast, we present a system that does
not rely on the definition of suitable feature representations, and
can learn successful movement skills from non-expert users in as
little as 20 min in total.

1.1.2. Human-Robot Interaction With Machine

Learners
Developing machine learning algorithms, we cannot imagine
or model in theory what everyday, non-expert users will do
with the system. For example, studies in imitation learning or
Programming by Demonstration have shown that people will
show completely different movement trajectories depending on
where the robot learner is looking at the time of demonstration
Vollmer et al. (2014). Thus, if we develop systems without
considering human factors and testing it in HRI studies with
everyday people, then our systems in the end might not be usable
at all. Here, we briefly review studies of human-robot-learning
scenarios with real naive human users. Some related HRI studies
test machine learning algorithmswith humans users and examine
how naive users naturally teach robots and how the robot’s
behavior impacts human teaching strategies (see Vollmer and
Schillingmann, 2017, for a review). In the area of concept learning
for example, Cakmak and Thomaz (2010) and Khan et al. (2011)
studied how humans teach a novel concept to a robot. In a task
with simple concept classes where the optimal teaching strategy is
known, Cakmak and Thomaz (2010) found that human teachers’
strategies did not match the optimal strategy. In a follow-up
study, they tried to manipulate the human teacher to employ
the optimal teaching strategy. Khan et al. (2011) provided a
theoretical account for the most common teaching strategy they
observed by analyzing its impact on the machine learner.

Natural human teaching behavior of movement skills is very
complex, highly adaptive and multimodal. Previous HRI studies
have investigated the naive demonstration of continuous robot
movement skills, focusing on the usability of kinesthetic teaching
Weiss et al. (2009), or not applying machine learning algorithms
but studying the influence of designed robot behavior, for
example incorporating findings from adult-infant interactions
(Vollmer et al., 2009, 2010, 2014).

Weiss et al. (2009) have shown that naive users are able
to teach a robot new skills via kinesthetic teaching. Here, we
do not focus on the demonstration part of the skill learning
problem, but the users’ feedback replaces the cost function for
task performance optimization.

1.2. Contribution and Outline
In this work, we investigate whether a completely unmodified
version of a state-of-the-art skill learning algorithm can cope
with naive, natural user feedback. We deliberately restricted
our system to components of low complexity (one of the most

standard movement representations in the robotics literature, a
very simple optimization algorithm, a simplistic user interface),
in order to create a baseline against which more advanced
methods could be compared.

We present a first study with non-expert participants
who teach a full-size humanoid robot a complex movement
skill. Importantly, the movement involves continuous motor
commands and cannot be solved using a discrete set of actions.

We use Dynamic Movement Primitives (DMPs), which are
“the most widely used time-dependent policy representation in
robotics (Ijspeert et al., 2003; Schaal et al., 2005)” (Deisenroth
et al., 2013, p. 9) combined with Covariance Matrix Adaptation
Evolution Strategy (CMA-ES, Hansen, 2006) for optimization.
Stulp and Sigaud (2013) have shown that the backbone of CMA-
ES, “(µW , λ)-ES one of the most basic evolution strategies is able
to outperform state-of-the-art policy improvement algorithms
such as PI2 and PoWER with policy representations typically
considered in the robotics community.”

The task to be learned is the ball-in-cup game as described by
Kober and Peters (2009a). Usually, these state-of-the-art learning
mechanisms are tested in the lab in simulation or with carefully
designed cost functions and external tracking devices. Imagine
robots in private households that should learn novel policies from
their owners. In this case, the use of external tracking devices
is not feasible, as it comes with many important requirements
(e.g., completely stable setup and lighting conditions for color-
based tracking with external cameras). We chose the ball-in-
cup game for our experiment, because it has been studied in
a number of previous works (Miyamoto et al., 1996; Arisumi
et al., 2005; Kober and Peters, 2009b; Nemec et al., 2010, 2011;
Nemec and Ude, 2011) and we can therefore assume that it is
possible to solve the task using DMP-based optimization. Still,
it is not at all trivial to achieve a successful optimization, but a
carefully set up sensory system is required to track the ball and
the cup during the movement, as well as a robustly implemented
cost function (covering all contingencies, see section 2.2). We
therefore believe the task to be a suitable representative for the
study of robot learning of complex movements from naive users,
which would otherwise require substantial design effort by an
expert.

Policy search algorithms with designed cost functions usually
operate on absolute distances obtained via a dedicated sensory
system. However, participants in our study are naive in the sense
that they are not told a cost function and it is difficult for humans
to provide absolute distances (i.e., the cost) as feedback to the
robot. Therefore, we provided participants with a simple user
interface with which they give discrete feedback for each robot
movement on a scale from one to five.

The central question we aim to answer is: can human users
without technical expertise and without manual or specific
instructions teach a robot equipped with a simple, standard
learning algorithm a novel skill in their homes (i.e., without
any external sensor system)? For the evaluation, we focus on
system performance and the user’s teaching behavior. We report
important difficulties of making learning in this setup work with
an external camera setup (section 2.2) and with human users
(section 4.1).
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2. MATERIALS AND METHODS

2.1. System
2.1.1. Robot
Pepper is a 1.2 m tall humanoid robot developed and
sold by SoftBank Robotics. Pepper’s design is intended to
make the interaction with human beings as natural and
intuitive as possible. It is equipped with a tablet as input
device. Pepper is running NAOqi OS. Pepper is currently
welcoming, informing and amusing customers in more
than 140 SoftBank Mobile stores in Japan and it is the
first humanoid robot that can now be found in Japanese
homes.

In our study, Pepper used only its right arm to perform the
movements. The left arm and the body were not moving. For the
described studies, any collision avoidance of the robot has been
disabled. Joint stiffness is set to 70%.

2.1.2. Setup
The setup is shown in Figure 1. Two cameras recorded
the movement at 30 Hz, one from above and another
one from the side. This allowed for tracking of the
ball and cup during the movements. All events,
including touch events on the tablet of the robot were
logged.

2.1.3. Ball and Cup
The bilboquet (or ball and cup) game is a traditional children’s
toy, consisting of a cup and a ball, which is attached to the cup
with a string, and which the player tries to catch with the cup.

Kober et al. have demonstrated that the bilboquet movement can
be learned by a robot arm using DMP-based optimization (Kober
and Peters, 2009a), and we have demonstrated that Pepper is
capable of mastering the game1. In this study, the bilboquet toy
was chosen such that the size of the cup and ball resulted in a level
of difficulty suitable for our purposes (in terms of time needed to
achieve a successful optimization) and feasibility regarding the
trade-off between accuracy (i.e., stiffness value) and mitigating
hardware failure (i.e., overheating). Usually, such a movement
optimization provides a more positive user experience when
learning progress can be recognized. Thus, the initialization and
exploration parameters together should yield an optimization
from movements somewhere rather far from the cup toward
movements near the cup. With a small cup, if the optimization
moves rather quickly to positions near the cup, the “fine-tuning”
of the movement to robustly land the ball in the cup takes
disproportionally long. This is partially due to the variance
introduced by hardware. Therefore, we chose the cup size to
result in an agreeable user experience by minimizing the time
spent on “fine tuning” of the movement near the cup at the end
of the optimization process on the one hand, and on the other
hand by minimizing the teaching time until the skill has been
successfully learned.

2.1.4. Learning Algorithm
We implement the robot’s movement using dynamic movement
primitives (DMPs) (Ijspeert et al., 2013). We define the DMP as

1https://youtu.be/jkaRO8J_1XI

FIGURE 1 | Experimental setup from above. In the studies with optimization via the external camera setup (section 2.2), where the experimenter only returned the ball

to its home position, the seat for the participant remained empty.
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coupled dynamical systems:

1

τ
ÿt = αy(β(yg − yt)− ẏt) + vt(yg − y0) · hθ (xt) (1)

1

τ
v̇t = −αvvt(1−

vt

K
) (2)

The “transformation system,” defined in Equation (1), is
essentially a simple linear spring-damper system, perturbed by
a non-linear forcing term hθ . Without any perturbation, the
transformation system produces a smooth movement from any
position yt toward the goal position yg (both positions defined
in the robot’s joint space). The forcing term hθ is a function
approximator, parametrized by the vector θ . It takes as input a
linear system xt , which starts with value 0 and transitions to 1
with constant velocity (see Stulp, 2014). The introduction of the
forcing term allows us to model any arbitrarily shapedmovement
with a DMP.

As suggested by Kulvicius et al. (2012), a “gating system”
(defined in Equation 2) is used to ensure that the contribution
of the forcing term hθ to the movement disappears after
convergence. It is modeled after a sigmoid function, with starting
state 1 and attractor state 0, where the slope and inflection point
of the sigmoid function are determined by the parameters αv and
K (for details, see Stulp, 2014). This way, stable convergence of
the system can be guaranteed even for strong perturbations, as we
know that the transformation system without any perturbation
by the forcing term is stable, and the multiplication of the forcing
term with the gating variable vt blends out the perturbation once
the gating system has converged.

For learning the ball-in-a-cup skill on Pepper, we adopt Stulp
and Sigaud’s method of optimizing the parameter vector θ using
simple black-box optimization (Stulp, 2014). More specifically,
we use the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES, Hansen, 2006) for optimization, and locally weighted
regression (Atkeson et al., 1997) for the function approximator
hθ . The parameter space is 150 dimensional as we use 5 degrees-
of-freedom (DoF) in the robot arm and 30 local models per
DoF. Following the Programming by Demonstration paradigm,
we initialize the local models via kinesthetic teaching, thus first
recording a trajectory, and subsequently determining model
parameters via regression on the trajectory data points. After this
initialization, we keep all but one parameter of each local model
fixed: in the CMA-ES-based optimization, we only optimize the
offset of the local models, which proves to allow for a change in
the shape of the trajectory that is sufficient for learning.

CMA-ES functions similarly to a gradient descent. After the
cost has been obtained via the defined objective function for each
roll-out in a batch, in each update step, a new mean value for
the distribution is computed by ranking the samples according
to their cost and using reward-weighted averaging. New roll-outs
are sampled according to a multivariate normal distribution in
R
n with here, n = 150. There are several open parameters which

we manually optimized. We aimed at allowing a convergence to
a successful movement within a reasonable amount of time. The
parameters include the initial trajectory given to the system as a
starting point, the number of basis functions the DMP uses to

represent the movement, the initial covariance for exploration
and the decay factor by which the covariance is multiplied after
each update, the batch size as the number of samples (i.e.,
roll-outs) before each update, the stiffness of the joints of the
robot, the number of batches (i.e., updates) for one session in
the described studies. The initial trajectory was recorded via
kinesthetic teaching to the robot. We chose a trajectory with too
much momentum, such that the ball traveled over the cup. All
parameters and their values are listed in Table 1.

2.2. Optimization—External Camera Setup
In order to optimize the movement with external cameras and
to create a base-line corresponding to a state-of-the-art skill
learning system, a carefully designed cost function is defined that
determines the cost as the distance between the ball and the cup
at height of the cup when the ball is traveling downward, similar
as described in Kober and Peters (2009a). As with any sensory
system designed for an automatedmeasurement of a cost or error,
significant care has to be taken to ensure robust and accurate
performance, as already a slightly unreliable sensory system can
prohibit the skill learning. In this case, particular care had to
be taken for example in choosing camera models with high-
enough frame rates, to ensure that the fast traveling ball could
be accurately tracked in the camera image. During a roll-out, the
ball typically (this depends on the chosen initialization, here, it
will) passes the height of the cup and then descends again. From
a webcam recording the side of the movement, we determine the
exact frame when the descending ball passes the vertical position
of the cup. In the corresponding frame from the top view camera
at this moment, we measure the distance between the center of
the ball and the center of the cup in pixels (see Figure 2).

We showed a cyan screen on the robot’s tablet right before the
movement began which could be detected automatically in the
videos of both the side and top camera, to segment the video
streams. The experimenter repositioned the ball in the home
position after each roll-out.

Apart from the usual issues for color-based tracking, as for
instance overall lighting conditions, the above heuristic for cost
determination needed several additional rules to cover exceptions
(for instance, dealing with the ball being occluded in the side
view when it lands in the cup or passes behind the robot’s arm).
More severely, in this particular task the ball occasionally hits the
rim of the cup and bounces off. The camera setup in this case

TABLE 1 | Overview of the open parameters of the system which influence

learning.

Parameter Value

Initialization Same for all studies

Number of basis functions 30

Covariance 80

Decay rate 0.8

Batch size 10

Stiffness 70 %

Number of batches 8
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detects the frame in which the ball passes beside the cup after
having bounced off the rim, and thus assigns a too high cost to
the movement. Although we were aware of this, we refrained
from taking further measures to also cover this particularity of
the task, as we found that the camera-based optimization would
still succeed. In a version of the game with a smaller cup size
however, this proves to be more problematic for the optimization
and needs to be taken into account.

For initial trajectories that do not reach the height of the
cup, additional rules would need to be implemented for low
momentum roll-outs.

2.3. Optimization—Naive Users
In the following, we describe the conducted HRI study with non-
expert users, who are naive to the learning algorithm and have
little to no experience with robots. It was approved by the local
ethics committee and informed consent was obtained from all
participants prior to the experiment.

2.3.1. Participants
Participants were recruited through flyers/adds around the
campus of Bielefeld University, at children’s daycare centers,
and gyms. Twenty-six persons took part in the experiment.
Participants were age- and gender-balanced (14 f, 12 m, age:
M = 39.32, SD = 15.14 with a range from 19 to 70 years).

2.3.2. Experimental Setup
The experiment took place in a laboratory at Bielefeld University.
The participant was sitting in front of Pepper. The experimenter
sat to the left of the participant (see Figure 1). As in the other
condition, two cameras recorded the movement, one from above
and another one from the side, such that a ground truth cost
could be determined. However, the camera input was neither
used for learning, nor was communicated to participants that and
how the cost would be determined from the camera images.

2.3.3. Course of the Experiment
Each participant was first instructed (in German) by the
experimenter. The instructions constitute a very important
part of the described experiment because everything that is
communicated to participants about the robot and how it learns
might influence the participants’ expectations and, in turn, their
actions (i.e., ratings). Therefore, the instructions are described in
full detail. It included the following information: The research
conducted is about robot learning. The current study tests the
learning of the robot Pepper and if humans are able to teach it
a task, especially a game of skill called ball in cup. The goal of
the game is that Pepper gets the ball into the cup with movement.
During the task, Pepper will be blindfolded. The cup is in Pepper’s
hand and in the home position the ball is hanging still from the
cup. The participant was instructed that he/she could rate each
movement via a rating GUI, which was displayed on the robot’s
tablet (see Figure 3). The experimenter showed and explained the
GUI. The participant can enter up to 5 stars for a given roll-out
(as in Figure 1). The stars correspond to the ratings of (common

FIGURE 3 | The rating GUI displayed on the robot’s tablet, showing a

common 5-point Likert-scale, a button to accept the chosen rating, and a

button to repeat the last shown movement.

FIGURE 2 | Detection of ball and cup at the respective frame of interest in side and top view.
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5-point Likert-scales) 1: not good at all, 2: not so good, 3: average,
4: good, 5: very good. A rating is confirmed via the green check
mark button on the right. Another button, the replay button on
the left, permitted the participant to see a movement again, if
needed. When the rating was confirmed, it was transformed into
a cost as cost = 6− rating to invert the scale, and was associated
to the last shown movement for the CMA-ES minimization. A
ready prompt screen was then shown to allow the repositioning
of the ball still in the home position. After another button touch
of confirmation on this screen, the robot directly showed the next
roll-out.

As stated above, the camera-setup remained the same also
in this study, however, the videos were only saved and used
afterwards to compute ground truth. In this study, the cameras
were not part of cost computation or learning. Participants were
also informed of the cameras recording the movements. We told
them that we would use the recordings to later follow up on
what exactly the robot did. We informed participants that each
participant does a fixed number of ratings at the end of which
the tablet will show that the study has ended. At this point,
participants were encouraged to ask any potential questions they
had and informed consent was obtained from all participants
prior to the experiment.

Neither did we tell participants any internals of the learning
algorithm, nor did we mention any rating scheme. We also
did not perform any movement to prevent priming them about
correct task performance.

Then, Pepper introduced itself with its autonomous life
behavior (gestures during speech and using face detection to
follow the participant with its gaze). Pepper said that it wanted
to learn the game blindfoldedly but did not know yet how exactly
it went. It further explained that in the following it would try
multiple times and the participant had to help it by telling it
how good each try was. After the experimenter had blindfolded
Pepper, the robot showed the movement of the initialization (see
section 2.1.4).

After rating the 82 trials (the initialization + 80 generated roll-
outs + the final optimized movement), each participant filled
out a questionnaire on the usability of the system, and the
participant’s experience when teaching Pepper. A short interview
was conducted that targeted participants’ teaching strategies and
feedback meaning.

3. EXPERIMENTAL RESULTS

3.1. System Performance
The system performance in the two studies is shown in Figure 4.
To compare the system performance across the studies, we
defined five different measures of success on the objective cost
only:

• Is the final mean a hit or a miss? (Final.hit)
• The distance of the final mean in pixels (Final.dist)
• The mean distance of all roll-outs in the final batch in pixels

(Batch.dist)
• The total number of hits (#hits)
• The number of roll-outs until the first hit (First.hit)

Based on these success measures, we perform statistical tests with
the aim to determine what is more successful in optimizing this
task, the camera setup or the naive users.

The tests did not reveal any significant differences in
performance between the two. Descriptive statistics can be found
in Table 2. We conducted a CHI-square test for the binary hit or
miss variable of the final roll-out (Final.hit) which did not yield
significant results, χ2

(1,41) = 1.5, p = 0.221. We conducted four
independent samples t-tests for the rest of the measures. For the
distance of the final mean (Final.dist), results are not significant,
t(35.66) = −1.527, p = 0.136. For the mean distance in roll-outs
of the final batch (Batch.dist), results are not significant, t(39) =
−0.594, p = 0.556. For the total number of hits (#hits), results are
not significant, t(39) = 0.66, p = 0.513. For the number of roll-
outs until the first hit (First.hit), the analysis was not significant
either, t((31) = −0.212, p = 0.834.

When looking at the HRI study only, we identify three
main cases of learning performance: (a) successful convergence,
with sub-cases (a.i) early convergence, N = 12 and (a.ii) late
convergence, N = 5; (b) premature convergence, N = 6; and
(c) unsuccessful convergence, N = 3 (see Figure 5). Also in
the camera optimized sessions, two out of 15 sessions showed
unsuccessful convergence, which hints at important difficulties
in both setups.

3.2. User Teaching Behavior
To investigate the teaching behavior of the non-expert users, we
are particularly interested in the strategies that are successful or
unsuccessful for learning.

3.2.1. Questionnaire and Interview
We first report the questionnaire and interview answers relating
to the strategies of the participants in our study. This will give
us a general idea about their (self-reported) teaching behavior
before we analyze the actual scores. The strategies participants
report in questionnaires and interviews can be categorized into
five approaches.

3.2.1.1. Distance from ball to cup
The majority of participants (N = 15) reported to use scores to
rate the distance from the ball to the cup. Interestingly, all of these
participants are part of sessions we identified as (a) successful
convergence. This suggests that this strategy leads to success.

3.2.1.2. Momentum
A few participants (N = 2) reported to rate the momentum of
a movement. Of course at the beginning of the sessions, the
momentum correlates with the distance of the ball and cup. A
movement with less momentummoves the ball closer to the cup.
One of the participants who reported this strategy successfully
trained the robot, for the other participant, the exploration
converged prematurely.

3.2.1.3. Comparative ratings
A few others (N = 4) reported to give ratings comparing each
movement to the previous one: if the movement was better
than before, the rating was better and vice versa. Interestingly,
sessions of participants with this teaching strategy all fall into the
premature convergence category (b) described in section 3.1.
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FIGURE 4 | Ground truth from cameras for the 80 roll-outs in a session. First and last movements (with blue background) are initialization and final mean, respectively.

Gray backgrounds indicate batches (8 in total). The central mark of box plots is the median, the lower edge of a box is the 25th percentile and the upper edge the

75th percentile, the whiskers extend to 1.5 times the interquartile range. Dots with underlying crosses lye outside the whiskers and could be considered as outliers.

Successful movement executions can clearly be distinguished from unsuccessful ones, as they lie in a “band” of distance costs between 0 and around 15,

corresponding to the ball lying inside the cup. The ball passing directly next to the cup resulted in a computed cost larger than 20, resulting in the clear separation that

can be seen.

TABLE 2 | Descriptive Statistics.

Measure Cam HRI

Final.hit 80% hits 61.5% hits

M SD M SD

Final.dist (pixels) 14.39 11.21 21.89 20.15

Batch.dist (pixels) 25.88 16.00 27.82 21.66

#hits 20.27 11.84 17.96 14.97

First.hit (rollout number) 27.15 17.01 28.55 19.41

3.2.1.4. Spontaneous ratings
Two participants claimed to rate the movements spontaneously,
without any clear strategy (N = 2). For one of the two
participants, exploration converged late, but successfully (a) and
for the other the session was unsuccessful (c).

3.2.1.5. Individual strategies
The remaining participants reported individual strategies (N =
3). For instance one participant in this category gave always
the same score (one star) with the intention to let the robot
know that it should try something completely different in order
to change the movement completely. The other two strategies
were not reported clearly. However, the described strategy as
well as another in this category, were not successful (c). One
of the participants used a strategy that lead to premature
convergence (b).

3.2.2. Correlation With Ground Truth
Based on the self-reported user strategies, we expect the
successful sessions to also reflect the ‘Distance from ball to cup’
strategy in the actual scores participants gave. We test this by
calculating the correlation between the participant scores and the
ground truth of the robot movements. In the HRI case in general,
participants received an average correlation coefficient of M =
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0.72, SD = 0.20. The strategy to rate according to the distance
between the ball and the cup should yield a high correlation
value and thus we expect successful sessions to obtain a higher
correlation coefficient than sessions with premature convergence,
which in turn receives a higher correlation coefficient than
unsuccessful convergence (i.e., success category a > b > c).
Because of small sample sizes, we conduct a Kruskal-Wallis H
test. There was a statistically significant difference in correlation
coefficients between the three different success categories, χ2

(2) =

8.751, p = 0.013 < 0.05. An inspection of the mean ranks for
the groups suggest that the successful sessions (a) had the highest
correlation (mean rank = 16.24,M = 0.75, SD = 0.20), with
the unsuccessful group (c) the lowest (mean rank = 2.67,M =

0.58, SD = 0.29), and prematurely converged sessions in between
(mean rank = 11.17,M = 0.045, SD = 0.25). Pairwise post-hoc
comparisons show a significant difference between the successful
(a) and unsuccessful (c) sessions only (p = 0.014 < 0.05,
significance value adjusted by Bonferroni correction for multiple
tests). Thus the results confirm our hypothesis.

3.2.3. Score Data
Prototypical plots for the three success strategies are shown in
Figure 6. They corroborate and illustrate the teaching strategies
we found.

Looking at individual plots of scores, we can draw a number
of additional qualitative observations:

3.2.3.1. Hits receive always 5 stars
We observe that a hit (i.e., the ball lands in the cup) for all
participants always receives a rating of 5 stars. Though some
participants reserve the 5 star rating for hits only, in general, also
misses could receive a rating of 5.

3.2.3.2. Rating on a global scale
One strategy we observe is to give ratings on a global scale,
resulting in scores similar to the ground truth, but discrete.

3.2.3.3. Rating on a local scale
Some people that rate according to the distance between ball
and cup, take advantage of the full range of possible scores
during the whole session and adjust their ratings according to the
performance.

3.2.3.4. Giving the same score multiple times
Some participants gave the same score multiple times in one
batch. This could be due to perceptual difficulties. Participants
often complained during the study that all movements look the
same. Also this behavior could be part of a specific strategy,
for example a behavior emphasizing the incorrect nature of the
current kind of movement in order to get the robot to change
the behavior completely (increase exploration magnitude) or a
strategy that focuses on something else than the distance.

4. DISCUSSION

The results of this work can be summarized with two main
findings.

FIGURE 5 | System performance for all sessions in a success category. Each

line corresponds to camera obtained ground truth (i.e., automatically detected

ball to cup distance in pixels) for one session (80 rollouts). Dots mark hits.

Each plot corresponds to one success category: (A.i) successful early

convergence; (A.ii) successful late convergence; (B) premature convergence;

and (C) unsuccessful convergence.

1. CMA-ES optimization with DMP representation works well
with un-experienced, naive users, who are giving discrete
feedback.

2. The main strategy users naturally apply, namely to rate
according to the distance between the ball and the cup, is most
successful. Relational feedback users provide, which depicts a
binary relation of preference in a pair of consecutive trials, in
this setup leads to premature convergence.

DMPs are an established method for open-loop state-less
optimization of robot skills and have been utilized for robot
learning of diverse tasks, such as for (constrained) reaching tasks
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FIGURE 6 | Individual visualizations for all roll-outs in one prototypical session for (A) successful, (B) premature, and (C) unsuccessful convergence. Colors show

score given (darker shades correspond to higher scores, brighter shades correspond to lower scores). Concentric circles show equidistant positions around the cup,

which is located in the center.

(Guenter et al., 2007; Kormushev et al., 2010; Ude et al., 2010), the
ball-in-the-cup game (Kober and Peters, 2009b), pick-and-place
and pouring tasks (Pastor et al., 2009; Tamosiunaite et al., 2011),
pancake flipping (Kormushev et al., 2010), planar biped walking
(Schaal et al., 2003; Nakanishi et al., 2004), tennis swings to a fixed
end-point (Ijspeert et al., 2002), T-ball batting or hitting a ball
with a table tennis racket (Peters and Schaal, 2006; Calinon et al.,
2010; Kober et al., 2011), pool strokes (Pastor et al., 2011), feeding
a doll (Calinon et al., 2010), bi-manual manipulation of objects
using chopsticks (Pastor et al., 2011), dart throwing (Kober et al.,
2011), Tetherball (Daniel et al., 2012), and one-armed drumming
(Ude et al., 2010).

While we so far only tested the learning in one task (the ball-
in-the-cup game), our results suggest that optimization in all
of these tasks, which usually entails the difficult design of cost
function and sensory system, could be achieved with a simple,
generic user interface even in home settings by non-expert users.
Through their task knowledge, users are able to impart the goal of
the task, which is not implicitly pre-programmed into the robot
beforehand, without explicitly formulating or representing a cost
function. Further studies involving other tasks will be needed to
fully confirm this.

The discrete feedback users provide, seems to work as well as
the camera setup. Even without modifications, the system is able
to solve the task which could attest to (a) the robustness of this
simple base-line system toward unreliable human feedback and
(b) the ability of humans to adapt to the specifics of an unfamiliar
learning system.

We would like to point out that the camera setup was only able
to achieve the reported learning performance because of (a) the
hardware used (i.e., cameras with a specific frame rate) and (b)
because of the careful implementation of the cost function. As
such, naive human teaching was not tested against a naive reward
function but a highly tuned one. As outlined in section 2.2, the
design of a suitable cost function is rarely straight-forward, and in
practice requires significant adjustments to achieve the necessary
precision. We believe that with a few instructions to users,
system performance in this case can even be improved, and failed

sessions can be prevented. We could imagine the naive users
to perform even better than a cost function in some cases. For
instance, toward the end of the optimization, the ball frequently
hits the rim of the cup, especially, when a smaller cup is used.
Because the ball moves very fast, this event is difficult to track
for a vision system even with a high frame rate as it often occurs
between frames. Crucially, when the ball bounces off the rim, it
often travels far away from the cup and is thus assigned a high
cost value by the hand-coded cost function. In contrast, humans
can easily perceive this particular event, especially because it is
marked with a characteristic sound, and tend to rate it with a high
score. Also if the robot performs similarly bad roll-outs for some
time with the ball always at a similar distance from the cup and
then for the next roll-out, the ball lands at the same distance, but
on the other side of the cup, the user might give a high rating
to indicate the correct direction, whereas the camera setup will
measure the same distance.

4.1. Usability of/Difficulties With the
Current System
The optimal teaching strategy is not known for the system in this
task, but it seems that most naive users are able to successfully
train the robot. However, we have observed some difficulties users
had with the current system.

The DMP representation does not seem to be necessarily
intuitive for humans. During the optimization, it appears more
difficult to get out of some regions of the parameter space than
others. This is not apparent in the action space. Additionally, nine
participants reported to have first given scores spontaneously and
later developed a strategy, hinting at difficulties at the beginning
of the sessions, because they did not have any idea how to
judge the first movements as they did not know how much
worse the movements could get and they did not know the
magnitude of differences between movements. Apart from these
initial difficulties, four participants reported to be inconsistent
in their ratings at the beginning or to have started out with a
rating too high. This means that there is a phase of familiarization
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with the system and enhanced performance can be expected for
repeated teaching.

Due to the nature of CMA-ES and the way new samples
are drawn from a normal distribution in the parameter space,
robot performances from one batch did not differ wildly but
appeared rather similar. This was confusing to some participants,
as they were expecting the robot to try out a range of different
movements to achieve the task. In contrast, the CMA-ES
optimization resulted in rather subtle changes to the movement.
As a result, some participants rated all movements from one
batch with exactly the same score. This is of course critical for
the CMA-ES optimization, as it gives absolutely no information
about the gradient direction. This issue could also be mitigated
through repeated teaching interactions and familiarity with the
system.

Furthermore, with the use of CMA-ES, there is no direct
impact of the ratings. Participants expected the ratings to have
a direct effect on the subsequent roll-out. This lead to an
exploration behavior with some participants who tested the effect
of a specific rating or a specific sequence of ratings on the
following roll-out. The participants reacted with surprise to the
fact that after a hit, the robot again performed unsuccessful
movements. The mean of the distribution in the parameter space
could actually be moved directly to a hit movement, if the user
had the possibility to communicate this.

The cases of premature convergence could also be prevented
by, instead of CMA-ES, using an optimization algorithm with
adaptive exploration, like PI2CMA (Stulp and Oudeyer, 2012).
Furthermore, participants were in general content with the
possibility to provide feedback to the robot using a discrete scale.
However, several participants commented that they would have
preferred to also be able to provide verbal feedback of some
form (“try with more momentum,” “try more to the left”). This
supports findings by Thomaz et al. (2006) that human teachers
would like to provide “guidance” signals to the learner that, in
contrast to only giving feedback on the previous action, give
instructions for the subsequent action. How to incorporate such
feedback in the learning is subject of future work.

4.2. Outlook
We considered a learning algorithm without any modification or
adaptation toward the human. In the following, we suggest future
alterations to the system that we hypothesize to be beneficial

for either system performance or usability and which can be
measured systematically against the base-line.

• Giving users more instructions including information about
batches in learning. We have begun to study expert teaching of
this task which even outperforms camera-optimization.

• Include a button for ending optimization with the first hit.
The mean is set to the current roll-out and exploration is
terminated.

• Choosing an optimization algorithm with adaptive covariance
estimation, to mitigate premature convergence.

• Allowing users to do the optimization twice or perform a test-
run in order to alleviate skewed ratings due to wrong user
expectations toward the robot.

• Studying the effect of preference-based learning on system
performance and usability.
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